
Chapter 3
Operating System Support

The Operating System Layer

 An Operating System (OS) is an interface between a computer user and computer
hardware i.e OS acts as interface between application program and machine hardware.

 An Operating System (O.S.) is a system software that manages the hardware and software
resources and provides common set of services to the application software.

 An operating system is a software that performs all the basic tasks like: file management,
memory management, process management, handling input and output, and controlling
peripheral devices such as disk drives and printers.

 The OS layer is present below the middleware layer. OS provides problem-oriented
abstractions of the underlying physical resources.

 The middleware - OS combination of a distributed system should have good performance.

 Middleware is responsible to provide proper utilization of local resources to implement
mechanisms for remote invocations between objects or processes at the nodes. Kernel and
server processes are responsible to manage resources and present clients with an interface
to the resources.

 Examples: Windows, Linux, UNIX, MAC OS, etc.
 Clients access resources by making invocations to the server object or system calls to the

kernel.



 Kernel, as a resource manager, must provide encapsulation, protection and concurrent
processing.

OS Functionality (Assignment)

I. Processs Management
II. Thread Management
III. Communication Management
IV. Memory Management
V. Supervisor Functionality
VI. File Management, etc.

Protection

 The underlying resources in a distributed system should be protected from illegitimate
access.

 To ensure protection of resources, operating system must provides a means to provide
clients to perform operations on the resources if and only if they have rights to do so.

 For example: Consider a file with only read or write operations. The illegitimate access
would be access of file for write by the client who have read access only. Resources can be
protected by the use of type-safe programming language like JAVA in which no module
can access a target module without having a reference to it.

 Hardware support can be employed to protect modules from illegitimate invocations, for
which kernel should be implemented.



Kernel
 A kernel is a program that is executed with complete access privileges for the physical

resources on its host computer.
 It controls memory management.
 It ensures access of physical resources by the acceptable codes only.

 A kernel process executes in supervisor mode and restricts other processes to execute in
user mode.

 It sets up address space for the process. A process is unable to access memory outside its
address space. A process can switch the address space via interrupt or system call trap.

Types of Kernel
1) Monolithic Kernel
2) Micro Kernel



 Micro kernel is suitable for distributed operating system.
 The services of distributed system are complex and segregation of micro kernel makes it

easy.
 Micro kernel provides faster communication among the processes with low overhead.

Deadlock in Distributed System
A deadlock is a condition in a system where a set of processes (or threads) have requests for
resources that can never be satisfied. Essentially, a process cannot proceed because it needs to
obtain a resource held by another process but it itself is holding a resource that the other
process needs.

4 Conditions of deadlock:
 Mutual exclusion- A resource can be held by at most one process.
 Hold and wait- Processes that already hold resources can wait for another resource.
 Non-preemption- A resource, once granted, cannot be taken away.
 Circular wait- Two or more processes are waiting for resources held by one of the other

processes



Process and threads

 Process is an instance of a computer program that is being executed.
 The program in execution is known as process.
 It consists of code and its activity.
 Process Control Block (PCB) controls the operation of any process. PCB contains

information about processes. For example: process priority, process id, process state, CPU,
register, etc.

 The process can have the following states like new, ready, running, waiting, terminated,
suspended.

 In traditional OS, each process has an address space and a single thread of control.
 The distributes systems require internal concurrency for which process is multi-threaded.

 Thread is the smallest unit of processing that can be performed in an operating system.
 Thread is a light weighted process that shares the same address space of the corresponding

process but runs in quasi-parallel.
 Thread is the operating system abstraction of an activity.
 A process contains execution environment which is local kernel managed resources to

which its threads have access.

 Thread is the segment of a process means a process can have multiple threads and these
multiple threads are contained within a process.

 A thread has 3 states: running, ready, and blocked.

Importance of Thread in Distributed System
 Distributed system needs to support multiple users. Such concurrency is impossible

without multi-threaded support.
 Thread is able to block system calls without blocking the entire process. This makes

distributed system possible to communicate by maintaining multiple logical connections at
the same time.

 Thread can run in a single address space parallel on different CPU.
 Threads can share a common buffer which make it possible to implement producer-

consumer problem easily.



Communication and Invocation (Assignment)



Operating system architecture

Network OS
 Network OS has networking capability. They can be used to access remote resources.
 Each node has its own system image and a user is capable to log in to another computer

and run processes there.
 It allows for sharing of files and printer access among multiple computers in a network.

 Network Operating System is a computer operating system that facilitates to connection
and communication of various autonomous computers over a network. An Autonomous
computer is an independent computer that has its own local memory, hardware, and O.S.

 It is self capable to perform operations and processing for a single user.
 They can either run the same or different O.S.

 Ex: Windows Server 2003, Linux, Mac OS X, etc.

Distributed OS
 Distributed OS is an operating system that produces a single system image for all the

resources in the distributed system.
 Users are never concerned with where their programs run.
 The OS has control over all the nodes in the system.
 It is an OS that runs on multiple machines.

 Distributed Operating System is a model where distributed applications are running on
multiple computers linked by communications.

 A distributed operating system is an extension of the network operating system that
supports higher levels of communication and integration of the machines on the network.

 This system looks to its users like an ordinary centralized operating system but runs on
multiple, independent central processing units (CPUs).

 Ex: Solaris for SUN multiprocessor workstations, OSF/1 which is Unix compatible,
MICROS, etc.

Preference of NOS over DOS
 Users invest in applications to meet their current problem-solving needs. So, they do not

tend to adapt to a new operating system which is unable to run their applications even if
they are more efficient.

 Users always prefer to have a degree of autonomy for their machines, even in a closely-
knit organization. This is because they do not want to spoil their process performance due
to the process run by other users.





DOS as a Middleware

 A distributed software support layer that abstracts over the complexity and heterogeneity
of the underlying distributed environment with its multitude of network technologies,
operating systems, and implementation languages.

 The primary role of middleware is to ease the task of developing, deploying, and managing
distributed applications by providing a simple, consistent, and integrated distributed
programming environment.

 Middleware is the infrastructure that facilitates the creation of business applications, and
provides core services like concurrency, transactions, threading, messaging, and the SCA
framework for service-oriented architecture applications. It also provides security and
enables high availability functionality.

 Middleware in the context of distributed applications is software that provides services
beyond those provided by the operating system to enable the various components of a
distributed system to communicate and manage data.

 Middleware supports and simplifies complex distributed applications.

 In distributed systems, it hides the distributed nature of the application. It keeps a
collection of interconnected parts that are operational and running in distributed locations,
out of view making things easier and simpler to manage.

 Functions:
 Hides the intricacies of distributed applications
 Hides the heterogeneity of hardware, operating systems, and protocols
 Provides uniform and high-level interfaces used to make interoperable, reusable, and

portable applications
 Provides a set of common services that minimize duplication of efforts and enhances

collaboration between applications.


